Железо


Железо – это химический элемент, имеющий 26-й атомный номер в периодической таблице Дмитрия Ивановича Менделеева. Металл серебристо-белого цвета, обозначается символами Fe (от латинского Ferrum). В чистом виде железо является пластичным переходным металлом, применяется человеком в различных сферах с давних пор. Небольшое содержание примесей или добавок делают железо тверже, например, примеси углерода превращают железо в сталь. Железо, встречающееся в природе, является смесью четырех нуклидов, имеющих массовые числами 54 (доля содержания в природной смеси составляет 5,82% по массе), 56 (доля содержания в природной смеси составляет 91,66%), 57 (доля содержания в природной смеси составляет 2,19%) и 58 (доля содержания в природной смеси составляет 0,33%).

Железо стало известно человеку еще в древние времена, однако широкое распространение получила намного позже, т.к. в чистом виде металл встречается крайне редко, а добыча металла из железной руды требует наличия необходимого производственного процесса. Впервые, вероятно, человек познакомился с железом, содержащимся в метеоритах. Так, на древнеегипетском языке железо звучит как «бени-пет» и означает «небесное железо», древнегреческое название «sideros» происходит от латинского «sidus», что означает «небесное тело», хеттинские тексты XIV века до нашей эры вспоминают о железе, как о металле, упавшем с неба.

Способ получения железа из руды был изобретен во II веке до нашей эры в Западной Азии. Затем метод получил широкое распространение в Вавилоне, Греции и Египте. В Древней Руси и Европе железо получали сыродутным способом, в XII XIII веках более распространенным стал кричный способ, в середине XVIII века широкое распространение получил тигельный процесс, известный в Сирии еще в период раннего средневековья, но забытый, стал развиваться пудлинговый процесс, к концу XVIX века получили развитие процессы, позволяющие получать железо на промышленном уровне: мартеновский бессемеровский и томасовский процессы. Позднее возник электросталеплавильный процесс, позволяющий получать высококачественную сталь.

Железо с его сплавами является важнейшим конструкционным материалом в промышленном производстве и технике. Из стали, т.е. сплава железа с углеродом, изготавливают большую часть конструкций в тяжелой промышленности и машиностроении. Железная дорога, станки, грузовые и легковые автомобили, силовые установки и корпуса судов, а также многие другие конструкции изготавливают по большей части из стали. Производственные масштабы сталепроизводящей и сталепотребляющей отраслей промышленности на сегодняшний день являются  одним из основных показателей технико-экономического уровня развития региона или государства в целом.

Содержание железной руды в земной коре довольно большое. Залежи руды располагаются по всему земному шару, а добыча и производство металла не составляет каких-то особых сложностей. Железо довольно легко выплавляется из железной руды. Железо стало недорогим и очень распространенным материалом во многом благодаря всеобщей распространенности железной руды, а также относительной несложности обработки руды и производства металла. На основе производятся самые разные конструкционные материалы различные по своим свойствам и характеристикам. К примеру, чугун является прочным металлом с низкой температурой плавления, путем литья металлу можно придать любую необходимую форму. В зависимости от состава сталь может быть прочным и пластичным материалом, используемым в изготовлении, например, профильного проката, который используется в строительстве мостов и морских судов, или тугоплавким и очень твердым металлом, который служит материалом при производстве металлорежущего инструмента и др.

Биологические свойства


За исключением нескольких бактерий, железо, как микроэлемент, играет одну из важнейших ролей в протекании жизнедеятельности всех живых организмов. У животных железо можно встретить в составе многих белков и ферментов, которые участвуют в окислительно-восстановительных реакциях, в основном в процессе дыхания. Железо, как правило, входит в состав ферментов в виде комплекса по названием гем. Данный комплекс присутствует в гемоглобине, являющемся важнейшим белком, обеспечивающим доставку кислорода по крови ко всем органам в организме животных и человека. Именно гемоглобин окрашивает кровь в характерный для нее красный цвет.

В организме здорового человека содержится примерно 5 грамм железа. Более половины этого железа (57%) приходится на гемоглобин в крови, 16% на тканевые ферменты, 7% на миоглобин мышечной ткани, ну и 20 % отлаживается в таких органах как печень, почки, селезенка и костный мозг в качестве запаса.

Гемоглобин является сложным по составу белком, содержащим в том числе и небелковую гем-группу, доля которой занимает примерно 4% всего гемоглобина в организме. Гем является комплексом железа (II) с макроциклическим лигандом–порфирином, гемм имеет характерное плоское строение. В данном комплексе атом Fe связывается с четырьмя донорными атомами А макрокольца таким образом, что атом Fe располагается в самом центре данного порфиринового кольца. Атом железа образует пятую связь с атомом азота имидазольной группы гистидина, то есть аминокислотного остатка глобина.

Те комплексы железа ,которые отличны от гема, встречаются, к примеру, в очень важном ферменте рибонуклеотид-редуктаза, участвующем в синтезе ДНК, в ферменте метан-моноксигеназа, превращающим метан в метанол. Неорганические соединения железа встречаются в некоторых представителях царства бактерий, в некоторых случаях они используют железо для связывания азота из воздуха.

Ежесуточная потребность человека в железе составляет примерно 15 миллиграмм. Много железа содержится в сливовом соке, изюме, орехах, кураге, подсолнечных и тыквенных семечках. В проросшей пшенице содержание железа составяляет 1 миллиграмм на 10 грамм веса. Богат железом также и хлеб: с отрубями, хлебные изделия грубого помола и т.д. Следует понимать, что из всего потребляемого с пищей железа, организмом усваивается лишь 20 процентов. Пищевые продукты и витамины растительного происхождения помогают усваиванию железа. Железо совершенно не всасывается, если в пище присутствует фитиновая или щавелевая кислоты.

Если организм испытывает недостаток железа, начинают использовать специальные медицинские препараты на основе лекарственных растений. Когда-то для подобных целей широко применялись обыкновенные железные опилки. История оставила упоминание о том, что граф Бестужев-Рюмин (года жизни 1693–1766) в качестве возбуждающего и общеукрепляющего средства предложил специальные капли, которые являлись ни чем иным, как раствором трихлорида железа, в смеси с этанолом и этиловым эфиром. Такие капли даже получили название от своего создателя «бестужевские капли».В современной медицине для устранения недостатка железа в организме используются препараты в таблетках и капсулах с содержанием железного порошка, а также лекарства на основе ферроцена.


Интересные факты


  • - Первое железо, как металл, попало в руки человека «с неба». Не зря люди считали железо – небесным металлом, т.к. впервые его добыли из падающих на поверхность земли метеоритов. В древнейших предметах из железа есть существенная доля примесей никеля, именно такое железо содержится в метеоритах. Крупнейший железный метеорит нашли в 1920 году в юго-западной Африке. Метеорит назвали «Гоба», он весил 60 тонн.
  • - Железо в организм животных и человека поступает с пищей. Наиболее богаты железом такие продукты, как мясо, печень, яйца, бобовые, крупы, хлеб, свёкла. Интересно заметить, что когда-то в этот список был ошибочно внесен шпинат (по причине опечатки в записях результатов анализа, а именно был утерян «лишний» ноль после разделительной запятой).
  • - Многие косвенные данные подтверждают тот факт, что ядро нашей планеты главным образом состоит из сплавов железа. Радиус ядра Земли составляет приблизительно 3470 км, в то время как радиус самой Земли равен 6370 км.
  • - В свободном виде железо было обнаружено на луне. Процесс определения возраста лунных минералов при помощи радиоактивных изотопов показал, что они были кристаллизованы примерно 3,2 - 4,2 миллиарда лет назад. Данные цифры приблизительно совпадают с возрастом самых древних минералов, когда-либо обнаруженных на Земле.
  • - Неоднократные клинические эксперименты подтвердили тот факт, что крапива отлично справляется с лечением анемии, не уступая при этом синтетическим препаратам железа. В деревне каждая хозяйка знает, что курочки несутся лучше, когда в корм добавляют сушеную крапиву. Народные врачи-травники часто советуют пролечиться свежим соком крапивы, который выжимают из стволов и листьев молодых растений, собрать крапиву нужно перед цветением. Делается это довольно просто: нужно собрать, промыть, пропустить через соковыжималку либо миксер с малым количеством воды, ну а затем просто отжать сок. Полученный сок принимать по три столовые ложки в сутки. Сок крапивы не обладает приятным вкусом, зато он очень полезен. Его можно разбавлять с медом. Крапивный сок хорошо хранится в течение несколько дней в холодильнике.
  • - В 1941 году соединенные Штаты Америки вступили в мировую войну. Американская национальная конференция по вопросам питания в условиях военной обороны решила обогащать хлеб и муку железом, во избежание анемии в рядах американского населения. Первым признаком недостатка железа является усталость, а также вызванная этим анемия, а, как известно война усталых людей не терпит! Но есть одно но… В Северной Америке производили лишь белый хлеб и белую муку (таким образом это был чистый крахмал), а вот  ценная часть зерна уходила на отходы. В оном килограмме муки грубого помола, изготавливаемой из неочищенных зерен, содержание железа составляет примерно 30 миллиграмм, а в одном килограмме очищенной муки, произведенной из очищенного зерна — 8,2 миллиграмма. В соответствии с тогдашними нормами один килограмм обогащенной муки был должен содержать примерно 26 миллиграмм железа. В период с 1968 по 1970 год началась проверка данной акции в десяти штатах США. Тридцать тысяч семей, употребляющих обогащенные железом муку и хлеб, подвергли тщательному обследованию. В результате у всех у нихбыл обнаружен недостаток железа в организме.
В Европе ранний железный век продлился примерно с 1000 до 450 гг. до н. э. Данную эпоху называют голыптаттской, от названия города в Австрии, где археологами было найдено много железных предметов. В древности у определенных народов железо было дороже золота. Только представители знати имели право украшать себя железными изделиями, нередко они были в золотой оправе. Из железа даже изготавливали обручальные кольца, как в Древнем Риме.

История


Железо известно с древних времен. Самые первые изделия, выполненные из железа, были найдены во время археологических раскопок. Датируются предметы IV тысячами лет до нашей эры, это наследие древнеегипетской и древнешумерской цивилизаций. Железные изделия того времени представляли собой украшения и наконечники для оружия. При изготовлении этих предметов использовали метеоритное железо, а вернее сплав железа с никелем, который встречается в падающих на землю метеоритах. Во многих языках остались реминисценции о железе, как небесном металле.

В Месопотамии, Египте, Анатолии во II-III вв. до н.э. стали появляться первые изделия, выполненные из переплавленного железа, в их составе уже не было никеля. В основном железо использовалось в культовых принадлежностях. Вероятнее всего, в то далекое время железо было самым дорогим металлом, дороже даже золота.

Во времена античной Греции оружие изготавливали в основном из бронзы. Но в 23-й песне «Илиады» Гомер рассказал, что по окончании соревнования по дискоболу Ахилл наградил победителя железным диском. В середине II века до нашей эры производство железа повсеместно распространялось в Передней Азии (Ближний Восток), но большую часть все же составляли изделия из бронзы.

В XII – X вв. до н.э. в Передней Азии произошел скачок в производстве металлических приспособлений. Теперь оружие и другие предметы производили не из бронзы, а из железа. Такой скачок вероятнее всего был вызван не появлением прогрессивных методов производства железа, а перебоями поставок олова – одного из главных компонентов бронзы. Период массового перехода на производство железных изделий называют Железным веком.

В древние времена основным способом получения железа был сыродутный метод. В специальных горнах прокаливались перемежающиеся слои древесного угля и железной руды. В результате такого прокаливания получалось тестообразное губчатое или кричное железо. Такое железо освобождалось от шлака в процессе ковки. В первых горнах температура была довольно низкой, даже ниже температуры плавления чугуна. Поэтому железо было малоуглеродистым, а, значит, хрупким. Для увеличения прочности металла предметы из железа дополнительно еще раз прокаливали в присутствии угля, в результате поверхность металла насыщалась углеродом, а изделия становились заметно прочнее, намного прочнее таких же изделий из бронзы.

С развитием производства железа стали появляться более совершенные горны (на Руси говорили домны или домница), через какое-то время люди научились достигать температуры плавления чугуна. Изначально чугун считался побочным продуктом, от которого нет никакой пользы. В английском языке есть выражение «pig iron», что в переводе на русский означает «свинское железо» или «чушки», а в свою очередь от слова «чушки» и произошло название «чугун». Спустя какое-то время был обнаружен тот факт, что при дополнительном прожигании чугуна в горне при достижении высокой температуры чугун переплавляется в железо очень высокой прочности. Процесс, состоящий из двух стадий, оказался не только более эффективным, но и более выгодным. Несколько последующих веков использовался именно такой двухстадийный способ.

Первые упоминания о производстве железа из метеоритов в Китае относятся к тому же времени, что и в древнеевропейских странах. Вероятно, начиная с VIII века до нашей эры, там стало развиваться производство изделий из железа. В I веке до нашей эры в Китае научились производить чугун.


Нахождение в природе


По распространенности в природе железо является вторым металлом после алюминия и находится на четвертом месте среди всех элементов, уступаю лишь кислороду, алюминию и кремнию. Содержание химического элемента в земной коре по массе составляет 4,65%. Известно более 300 минералов, содержащихся в составе железных руд (сульфиды, окислы, силикаты, фосфаты, карбонаты, титанаты, и т. д.).

Важнейшие рудные минералы железа: магномагнетит, Титаномагнетит, Магнетит, Гематит, гидрогематит, Сидерит, Гётит, гидрогётит, железистые хлориты (тюрингит шамозит, и т.д.). В промышленных рудах содержание железа составляет  16 - 70%. Существуют богатые (менее 50% железа), рядовые (50—25% железа) и бедные (≥ 25% железа) железные руды. В зависимости от того, каков химический состав железной руды, ее применяют для выплавки чугуна после обогащения или в естественном виде. Железные руды, содержание металла в которых менее 50%, обогащаются до 60%, в основном способами магнитной сепарации либо гравитационным обогащением. Рыхлые или сернистые (менее 0,3% серы) богатые руды и концентраты обогащения окусковывают агломерацией, из концентратов производят окатыши. Жедезые руды, которые идут в доменную шихту, не должны содержать S, Р и Cu более 0,1 — 0,3% и As, Sn, Zn, Pb 0,05—0,09%, т.к. могут ухудшиться условия плавки или качество стали. Примесь в железной руде кремния, никеля, титана и вольфрама в большинстве случаев полезна. Mn, Cr и Ni улучшают качество стали, титан и вольфрам попутно извлекаются в процессах обогащения и металлургического передела.

Месторождения железной руды по происхождению разделяют на три группы: магматогенные, метаморфогенные и экзогенные. Магматогенные делятся на: магматические — это дайкообразные, пластообразные и неправильные залежи титаномагнетитов, которые связаны с габбро-пироксенитовыми породами (Лиганга в Танзании, Бушвельдские месторождения в ЮАР), апатито-магнетитовые залежи, которые связаны с сиенитдиоритами и сиенитами (Елливарс и Кируна в Швеции, Лебяжинское на Урале), скарновые или контактово-метасоматические, поялвяются вблизи интрузивных массивов или на контактах, и др.

Экзогенные месторождения: осадочные — механические и химические осадки озерных и морских бассейнов, более редко в дельтах и долинах рек, возникают в процессе местного обогащения соединениями железа вод бассейна, а также в результате сноса в воды железистых продуктов суши; слагают линзы или пласты среди осадочных, реже  — вулканогенно-осадочных пород; сюда относят месторождения бурых железняков, часть силикатных руд, сидеритов, (Керченское на Украине, Аятское в Казахстане; Лан-Диль в Германии, и т.д.). Месторождения коры выветривания появляются после выветривания железосодержащих горных пород; различаются элювиальные или остаточные месторождения, где продукты выветривания, обогащены железом (в результате выноса из горной породы других элементов) и остаются на месте (Украина - руды Кривого Рога, Россия - Курская магнитная аномалия, США - район оз. Верхнего) и цементационные (инфильтрационные), здесь железо выносится из выветривающихся пород, а затем отложено заново в пролегающих ниже горизонтах (Россия - Алапаевское месторождение Урала).

Метаморфогенные (или метаморфизованные) месторождения — это преобразованные под высоким давлением и температурой ранее существовавшие, в основном осадочные месторождения. Сидериты и гидроокислы железа при этом, как правило, переходят в магнетит и гематит. Метаморфические процессы могут дополняться гидротермально-метасоматическими образованиями магнетитовых руд. Подобные месторождения есть в России, Индии, Украине, США, Австралии и др.


Применение


Чистое железо применяется довольно ограниченно. Оно используется в производстве сердечников для электрических магнитов, в качестве катализатора при протекании химических процессов, в некоторых других сферах. Но такие сплавы на основе железа, как сталь и чугун, являются основой современной техники во всем мире. Многие соединения железа также находят свое применение. Например, сульфат железа (III) используется в процессе водоподготовки, цианид и оксиды железа применяют как пигменты в производстве различных красителей, в других областях используются другие соединения железа.

Железо с его сплавами выступает важнейшим конструкционным материалом в промышленном производстве и технике. Практически все конструкции машиностроения и тяжелых отраслей промышленности производятся в основном из сплавов железа с углеродом. Из стали производят и автомобили, и станки, и железные дороги, и корпуса судов с силовыми установками, и каркасы мостов и зданий, и многое другое. По масштабу производства стали можно судить об общем технико-экономическом уровне развития определенного государства или региона. В доле общемирового производства продукции, изготовленной из металла, сталь занимает первое место, имея долю 95%.

Железо иногда может входить в состав и других сплавов в качестве примеси. Например, никелевые сплавы. В производстве устройств долговременной компьютерной памяти, таких как дискеты и жесткие диски, магнитная окись железа является очень важным, даже незаменимым материалом.

Хлоридное железо, т.е. хлорид железа III, радиолюбители используют на практике в процессе травления печатных плат. Железный купорос (десятиводный сульфат железа) вперемешку с медным купоросом используется в строительстве и садоводстве для борьбы с вредными грибками. Железо применяют в качестве анода при производстве железо-никелевых аккумуляторов, а также железо-воздушных аккумуляторов.

В черно-белых лазерных принтерах, которые так распространены сегодня, в качестве тонера используют ультрадисперсный порошок магнетита. Ряд сплавов на основе железа обладают уникальными ферромагнитными свойствами, благодаря чему они нашли широкое применение в электротехнике при производстве различных электродвигателей магнитопроводов трансформаторов.

Для производства сплавов железа ответственного назначения и сталей служат совершенно новые процессы - электрошлаковый переплав, вакуумный процесс, электронно-лучевая и плазменная плавка и т.д. Разрабатываются способы получения стали в агрегатах с непрерывным процессом, что позволит обеспечить автоматизации процесса и полувчения высокого качества металла.

На основе железа изготавливаются материалы, которые способны выдерживать воздействие низких и высоких температур, высоких давлений и вакуума, больших переменных напряжений, агрессивных сред, ядерных излучений и т. д. Объемы производства железа и железных сплавов неуклонно растет.

С древности железо использовалось как художественный материал в Индии, Египте и Месопотамии. Со средневековых времен сохранилось множество произведений искусства выполненных из железа в странах Европы (Италии, Англии, России, Франции и др.) - дверные петли, кованые ограды, настенные кронштейны, флюгера, светцы, оковки сундуков. Изделия кованые насквозь из прутьев, а также предметы, выполненные из просечного листового железа (зачастую имеют слюдяную подкладку) отличаются четким линейно-графическим силуэтом, плоскостными формами, и эффектно просматриваются на фоне света и воздуха. В XX веке железо широко используется при изготовлении оград, решеток, ажурных интерьерных перегородок, монументов, подсвечников, и других элементов внешнего и внутреннего дизайна.


Производство


Производство чугуна

Чугун производят в вертикальных печах, называемых домнами. Чугун получают из шихты, которая содержит кусочки обогащенной руды, в присутствии кокса и флюсов. В доменную печь снизу вдувается обогащенный кислородом воздух. Углерод, содержащийся в коксе сгорает, а диоксид углерода, полученный таким путем, восстанавливается за монооксида счет до избытка углерода. Монооксид углерода, образующийся в печи, в последовательном порядке восстанавливает оксид железа, содержащийся в руде, до железа как металла:

3Fe2O3 + CO = 2Fe3O4 + CO2

2Fe3O4 + 2CO = 6FeO + 2CO2

FeO + CO = Fe + CO2

Содержащиеся в железной руде селикаты при взаимодействии с CaO образуют расплавленный шлак. Для достижения данного эффекта вместе с рудой в печь загружается в необходимой пропорции CaCO3. Известняк (CaCO3), или «флюс», в верхней части печи разлагается соответственно реакции:

CaCO3 = Ca + CO2

В результате образуется известь, которая способствует переводу силикатных примесей в жидкий шлак. Доменный процесс дает в результате шлака почти столько же, сколько и смого чугуна.

На сегодняшний день доменная печь является крупным сооружением, производящим 1000 тонн чугуна за сутки. Высота печи, составляет около 30 мметров, а диаметр на уровне заплечиков – около 8 метров. Нижняя часть печи охлаждается водой.

Производство стали

Производство стали представляет собой переплавку чугуна в присутствии окислителей. Во время выплавки стали содержание С снижается до полутора – двух процентов. Оксид FeO, образующийся в условиях окисления, реагирует с примесями и углеродом, окисляя их, при этом восстанавливается до Fe.

В бессемеровском (кислородно-конверторном) методе получения стали используется специальная емкость для выплавки, т.е. конвертер, который представляет собой ретортообразный резервуар.

Внутрь конвертера заливается жидкий чугун, продуваемый смесью кислорода, воздуха и углеводородов, загружают шихту, которая содержит стальной лом, руду, чугун и флюсы, затем подается чистый кислород.

Перед стартом кислородно-конвертерного процесса необходимо наклонить конвертер в сторону загрузочного пролета, а металлолом  засыпается через горловину. После в конвертер заливается жидкий металл из доменной печи, который содержит примерно 1,5% кремния м 4,5% углерода. Углерод окисляется до CO2 или CO, а кремний до SiO2. По загрузочному лотку добавляют известь, чтобы образовался шлак с диоксидом кремния. Вместе со шлаком выводится большая часть кремния

Существует еще и кислородно-конвертерный процесс с подачей кислорода в струе топлива через днище конвертера. В днище конвертера фурмы защищаются синхронной продувкой природного газа. Данный процесс протекает быстрее, он производительнее, процесса с верхней продувкой, но он не так эффективен в расплавлении металлолома. Но есть возможность сочетать нижнюю продувку с верхней.

Электрическая печь. Сначала электропечи применялись лишь для выплавки инструментальных и нержавеющих сталей, которые до этого выплавляли в тиглях. Но со временем электропечи заняли играть важное место в производстве стали из металлолома в случаях, когда не нужен передел чугуна. Сейчас около 30% нерафинированной стали производится в электропечах. Самые распространенные - дуговые электропечи. Пол такой печи облицовывают огнеупорным кирпичом, свод охлаждают водой. В своде есть три отверстия, в которые вводят угольные электроды. Между металлоломом и электродами на дне печи возникает дуговой разряд. В крупной печи сила тока достигает размера 100 000 А.

Физические свойства


Железо может иметь две кристаллические решетки: α- или γ- объемно-центрированной кубической и гранецентрированной кубической. Ниже температуры 910°С устойчива с α- модификация ОЦК-решёткой (при 20°С а = 2,86645 Å), γ-модификация устойчива при 910°С - 1400°С, ГЦК-решётка (а = 3,64 Å). При достижении 1400°С снова образуется ОЦК-решётка, δ-Fe (а = 2,94 Å), которая устойчива до температуры 1539°С. α - модификация ферромагнитная вплоть до токи Кюри (769°С). Модификации δ-Fe и γ-Fe парамагнитные.

В 1868 Д. К. Чернов  открыл полиморфные превращения железа и стали после нагревания и охлаждения. Углерод образует с железом твёрдые растворы внедрения, где атомы углерода, имеют малый атомный радиус (0,77 Å), они размещаются в междоузлиях кристаллической решётки металла, которая состоит из более крупных атомов. У железа атомный радиус составляет 1,26 Å.

Сочетание закалки и отпуска (нагрева до относительно низкой температуры с целью уменьшения внутреннего напряжения) придает стали требуемое сочетание пластичности и твёрдости.

Физические свойства железа напрямую зависят от чистоты металла. В промышленных материалах железу обычно сопутствуют примеси азота, углерода, кислорода, фосфора, водорода, серы. Даже очень малые концентрации данных примесей существенно изменяют свойства железа. Например, сера вызывает так называемую красноломкость, а фосфор (до 10-20 % Р) такое свойство как хладноломкость, на пластичность железа влияют углерод и азот, примесь водорода увеличивает хрупкость (водородная хрупкость). Снижение содержания примесей до 10-7-10-9% приводит к сильным изменениям физических свойств металла, а в частности повышается пластичность.

Давайте рассмотрим физические свойства чистого железа (примесей не более 0,01% по массе). Итак, атомный радиус железа составляет 1,26 Å, ионные радиусы Fe3+O,67 Å, Fe2+O,80 Å. Температура плавления 1539 °С, температура кипения примерно 3200 °С, плотность ( при 20°С) равна7,874 г/см3. Температурный коэффициент линейного расширения железа (при 20°С) составляет 11,7·10-6, теплопроводность металла (при 25°С) равна 74,04 вт/(м*К) = [0,177 (кал/см·сек·град)]

Теплоёмкость железа сильно зависит от структуры, с температурой изменяется сложным образом. Средняя удельная теплоёмкость железа ( при 0-1000°С) составляет 640,57 дж/(кг·К) = [0,153 кал/ (г·град)]. Параметр удельного электрического сопротивления (при 20°С) равен 9,7·10-8ом·м = [9,7·10-6ом·см], Модуль Юнга составляет 190—210·103 Мн/м.2 = = (19-21·103кгс/мм2), температурный коэффициент электрического сопротивления (при 0—100°С) равен 6,51·10-3, температурный коэффициент модуля Юнга равен 4·10-6, Кратковременная прочность на разрыв составляет 170-210Мн/м2, модуль сдвига равен 84,0·103 Мн/м2, относительное удлинение равно 45—55%, твёрдость металла по Бринеллю составляет 350—450 Мн/м2, предел текучести равен100Мн/м2, и ударная вязкость железа равна 300 Мн/м2.

Конфигурация внешней электронной оболочки атома железа имеет вид 3d64s2. Железо имеет переменную валентность (более устойчивы соединения двух- и трехвалентного железа). Железо образует с кислородом окись Fe2O3, закись FeO, и закись-окись Fe3O4. При обычной температуре во влажном воздухе железо покрывается рыхлой ржавчиной. Ржавчина по причине своей пористости не препятствует доступу воздуха и влаги к поверхности металла, поэтому она не предохраняет железо от дальнейшего окисления. Из-за разных видов коррозии каждый год теряются миллионы тонн железа. В результате нагревания железа в сухом воздухе выше температуры 200°С его поверхность покрывается тонкой окисной плёнкой, защищающей металл от коррозии в обычной температуре, что и лежит в основании технического способа защиты железа — методе воронения.


Химические свойства


При нагревании железа на водяном паре, металл окисляется с выделением Fe3O4 (при температуре ниже 570°С) либо FeO (при температуре выше 570°С), а также выделением водорода.

Такая гидроокись, как Fe(OH)2 образуется в результате действия аммиака или едких щелочей на водные растворы солей Fe2+ в атмосфере азота или водорода, имеет вид белого осадка. Впоследствии соприкосновения с воздухом гидроокись сначала зеленеет, а затем чернеет, ну а после быстро превращается в красно-бурую Fe(OH)3. Закись железа FeO проявляет его основные свойства. А Окись Fe2O3 является амфотерной и обладает плохо выраженной окисляющей функцией, реагирует с основными окислами (к примеру, с MgO), образует ферриты, т.е. такие соединения, как Fe2O3·nMeO, которые имеют ферромагнитные свойства, они широко применяются в радиоэлектронике. У шестивалентного железа, которое существует в виде ферратов, также выражены кислотные свойства. К примеру, K2FeO4, соль, не выделенная в обычном состоянии железной кислоты.

Железо способно легко реагировать с галогеноводородами и галогенами, давая при этом соли. Яркий пример - хлориды FeCl3 и FeCl2. В результате нагревания железа вместе с серой, образуются сульфиды FeS2 и FeS. У железа есть и карбиды — Fe2C (ε-карбид), Fe3C (цементит), выпадающие из твёрдых растворов углерода в железе при охлаждении данных растворов. Fe3C может также выделяться из раствора углерода в жидком железе если концентрации С будут высокими. Азот, почти, как и углерод, углерод, образует твёрдые растворы внедрения с железом. Из этих растворов выделяют нитриды Fe2N и Fe4N. С водородом железо способно давать только малоустойчивые гидриды, чей состав точно так и не установлен. Вследствие нагревания железо довольно энергично вступает в реакцию с фосфором и кремнием, при этом образуются фосфиды (к примеру, Fe3P) и силициды (к примеру, Fe3Si).

Соединения железа со многими элементами (кислород, сера и другими), которые образуют кристаллическую структуру, обладают переменным составом (например, в составе моносульфида содержание серы может изменяться от 50 до 53,3%). Данное явление объясняется наличием дефектов кристаллической структуры. К примеру, в закиси железа FeO некоторые ионы Fe2+ в узлах решётки замещаются ионами Fe3+. С целью сохранения такого свойства, как электронейтральность, некоторые узлы решётки, которые принадлежат ионам вида Fe2+, остаются пустыми, а фаза при обычных условиях записывется формулой Fe0,947O.

Величина нормального электродного потенциала железа в водных растворах солей Fe для реакции

Fe <- Fe2+ +2

Fe -> Fe2+ +2

равна 0,44 в, а для реакции

Fe <- Fe3+ +3

Fe -> Fe3+ +3

равен — 0,036 в. Таким образом, в ряду активностей железо имеет место левее водорода. Элемент может легко растворяться в разбавленных кислотах, выделяя водород и образовывая ионы Fe2+.

Довольно своеобразно взаимодействует железо с азотной кислотой. Концентрат азотной кислоты (плотность 1,45 г/см3) пассивирует железу в результате возникновения на поверхности металла окисной плёнки, а более разбавленная азотная кислотоа растворяет железо, образуя ионы Fe3+ и Fe2+ либо, восстанавливается до MH3 либо N2O и N2.

Растворы солей двухвалентного железа не устойчивы на воздухе: Fe2+ со временем окисляется и превращается в Fe3+. Водные растворы солей железа в результате процесса гидролиза осуществляют кислую реакцию. Добавка в растворы солей Fe3+ тиоцианат-ионов SCN способствует появлению яркой кроваво-красной окраски в результате возникновения Fe(SCN)3, а это в свою очередь позволяет осуществлять присутствие одной части Fe3+ в примерно 106-ти частях H2O. Для железа характерны образования комплексных соединений.